设为首页 | 登录 | 免费注册 | 加入收藏
文献检索:
  • 给学生一双数学的眼睛——“用字母表示数”教学实录及解读
  • 教学内容 义务教育六年制小学数学教科书第九册第92页-94页(北京基教版)。
  • 新课程 我们需要怎样的教学设计——由一次教学调研引发的思考
  • 近日,笔者随教研员老师去一所农村小学进行数学新课程教学调研。期间,观摩了当地一位青年教师执教的《正比例》课堂教学。感触颇多。由此,也引发了笔者对新课程理念下小学数学教学设计策略的一些探索性思考。
  • 论小学数学教学的互动生成(二)——对课堂教学中存在的几种状态的案例分析
  • 如果以互动生成的新教学过程观来反观当前的小学数学课堂教学,我们可以发现教师关于互动生成问题的认汉水平不同,其教学过程中的开放程度也就不同,教学中的互动生成也因此而呈现出不同的状态。本文为《论小学数学教学的互动生成》系列文章的第二篇,主要以案例的方式来展现小学数学课堂教学过程中不够开放、虚假开放、盲目开放的不同状态。在这几种不同的开放状态中.教师经常“遭遇”的问题就是,在怎样的情况下学生的基础性资源有生成的可能?学生生成的基础性资源怎样才能成为师生、生生的互动性资源?我们将通过案例分析的形式对这些问题作出回答,从而揭示教学过程中师生之间无法形成互动的深层原因。
  • 我在“模拟课堂”里做学生
  • 2005年暑假,我有幸参加了苏州工业园区组织的“教师培训班”(小学数学班)的进修学习,听了多个专家的讲座,受益匪浅。特别是培训活动设计了“模拟课堂”这样的形式,在各级各类培训是第一次见到。因为觉得新鲜,所以在邀请24名“学生”组成授课班级时,我就报了名。于是,我就做起了“模拟课堂”的“小学生”。
  • 比较教学片断 反思课堂教学
  • 四月的最后一个星期,我随市政府的教育督导组一起去农村的中心小学进行督导检查,听了一些数学课,其中两次听“分数的基本性质”后不禁在比较中反思起我们的课堂教学。
  • 预设与生成的区别
  • 前不久,我上了一节《平行四边形面积的计算》研究课。在课的准备、设计阶段适逢《小学数学教师》2005年第3期出版问世,更巧的是贵刊该期第38页刊登的是华应龙老师的一篇反思札记.谈的也是有关《平行四边形面积的计算》一课。我很欣赏华老师文中对这一节课的目标定位,即希望学生不仅学到平行四边形面积计算公式这一具体的结果,而且能在思想方法上有所收获;不仅能够正确地应用这一公式去求得各式各样平行叫边形的面积,而且能独立地发现平行四边形面积的计算方法,很好地理解这一公式的来源。
  • 优化小组合作学习一例
  • 随着新课程改革的不断深入,小组合作学习成了教学中经常使用的一种学习方式。作为一种新型的学习方式,小组合作学习有着传统学习方式不可替代的优点。可是在实践的过程中,我们也发现目前的小组合作学习存在着诸多的问题。很多时候,一些小组学习虽然看起来热闹,但实质上教师已经难以控制课堂,学生学习效率电比较低下。这里,笔者提供自己在“统计”教学中的一则案例,以示自己在教学实践中优化小组合作学习方面的一些努力。
  • 对数数法与凑十法的探讨
  • 数数法与凑十法是20以内进位加法两大主要的计算方法。在提倡算法多样化的今天,笔者以为需要对这两种方法主要适合哪些学生,或在应用中有哪些规律性问题进行探讨。于是,笔者对此进行了有意识的观察与初略研究,现简述如下。
  • 你我常用的“12根小棒”
  • 最近,听了三节《分数的意义》,有一个练习的设计,三位教师竟然不谋而合,但三人在具体的操作上却存在着很大的差异,所带来的课堂教学效果也大不相同。现把他们的处理方法摘取如下,与大家一起来探讨。
  • 哇!颜色跑出去了
  • 面积的意义是“空间与图形”中的一个重要的概念,对学生后续的学习具有重要的作用。人教版课标新教材将其安排在第六册,教材将“面积”定义由原先的“物体的表面或围成的平面图形的大小叫做它们的面积”改变为“物体的表面或封闭图形的大小就是它们的面积”。教学时教师往往从比较物体表面的大小和比较平面封闭图形的大小两方面引入面积的概念。学生对于“物体表面的大小叫做它们的面积”易于理解.而对于“封闭图形”,虽在第五册学习周长的意义时接触过这个概念,但三年级学生对此知之少而浅。如何引导学生理解什么是封闭图形,为什么必须是“封闭图形的大小就是它们的面积”呢?我想到了在课堂上用电脑“附件”中的“画图”软件来辅助教学。
  • 对“小数的认识”教学设计的一点建议
  • “小数的认识”是小学数学重要的教学内容,是整数的拓展与延伸。在多年使用人教版教,防的教学实践中。我对这部分教学内容的设计基本都是遵循教材编排的次序。把小数的认识建立在分母是10、100、1000的分数基础上。
  • 这样画学生最容易接受
  • 数学兴趣活动中,要画一个面积是2平方厘米的正方形,指导教师经过一番比划画出了图形,但无论他怎样讲解,均不能使当堂的小学生理解这个图形的面积就是2平方厘米。也无法确信他的画法就是正确的,兴趣活动一时陷入困境。
  • 一道试题引起的思考
  • 有一道六年级水平测试题,不少教师认为用小学知识不能解答,果真如此吗?笔者以为不然。在探求解题方法的过程中,我不但探求到易于被小学生接受的方法,而且发现题目中已知条件存在不足,在此提出与各位老师商榷。
  • 采取逆向思维巧求表面积
  • 例题:一个正方体木块的表面积是18平方分米,如果把它截成体积相等的8个正方体小木块,每个小木块的表面积是多少?
  • 过犹不及
  • 数学家就是能把一杯咖啡,变成一种学说的人。——保罗·爱尔多什(匈牙利) 将来,没有一个数学分支(不论它如何抽象)会不被用来解释现实世界的种种现象。——尼古拉·罗巴切夫斯基(俄罗斯)
  • 蜗牛的精神
  • 一个颇有生命力的问题: 一只蜗牛沿着一条长100米的橡皮绳以每秒1厘米的均速由一端向另一端爬行。每过一秒钟,橡皮绳就伸长100米,比如5秒钟后,橡皮绳就伸长500米了。假定橡皮绳可以任意拉长,而且拉伸是均匀的,蜗牛也会不知疲倦地一直往前爬,在绳子拉长时,蜗牛的位置理所当然均匀向前移动。问:如此下去,蜗牛能否最终爬到橡皮绳的另一端?
  • 对拉钦斯基“难题”的再思考
  • 《小学数学教师》2004年第7、8期刊登了河南省济源市李八庄子弟北小李会生老师以俄国著名科学家、教育家拉钦斯基的“口算”题10^2+11^2+12^2+13^2+14^2/365=?为素材而写的一篇文章——《拉钦斯基口算题揭秘》,读后颇受启发。
  • 我所认识的俞子夷先生
  • 1963年,我在华东师范大学教育系任教时,开展《小学算术课本史》的研究,我的导师沈百英教授介绍我到杭州去拜望俞子夷先生。
  • 《小学数学教师》2005年总目录
  • 伊斯兰艺术与建筑中的几何图案
  • 造房贴砖中的几何图案
  • 教堂中的几何图案
  • 罗马马赛克中的几何图案
  • 布艺设计中的几何图案
  • 上海教育出版社图书窗口
  • 《小学数学教师》封面

    主办单位:上海教育出版社

    主  编:陈和

    地  址:上海永福路123号

    邮政编码:200031

    国际标准刊号:issn 1006-1606

    国内统一刊号:cn 31-1071/g4

    邮发代号:4-312

    单  价:3.60

    定  价:43.20


    关于我们 | 网站声明 | 合作伙伴 | 联系方式
    金月芽期刊网 2017 电脑版 京ICP备13008804号-2