设为首页 | 登录 | 免费注册 | 加入收藏
文献检索:
  • 《探索三角形相似的条件(一)》教学设计
  • 一、教材分析 “探索三角形相似的条件”是苏科版八年级下册“图形的相似”这一章的内容.本节课是探索三角形相似条件的起始课,它是在学生初步了解了什么是相似图形,以及掌握了探索三角形全等的方法的基础上进行的.
  • 立足学生的认知基础,开展数学概念教学
  • 《数学课程标准》指出:数学课程“不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发……数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上.”
  • 解直角三角形的原则和策略
  • 锐角三角函数是初中数学“空间与图形”中的重要组成部分,而解直角三角形是锐角三角函数中的重要内容.解直角三角形时求解未知量的先后顺序,以及三角函数的不同选择,都会对运算过程的繁简、以及运算结果的精确程度有直接影响.本文将以教材中一道习题为例,谈谈解直角三角形时应遵循的原则及策略.
  • 四边形对角线的另一个性质
  • 我们已经在教材中学过平行四边形对角线的性质.本文介绍一般四边形对角线的另一个性质,并利用其解决初中数学竞赛中的一些与面积有关的问题.
  • 利用基本图形巧解题
  • 几何图形大多由基本图形复合而成,因此,熟悉并掌握基本图形,有助于快速准确地从复杂的图形中分解出基本图形,防止其它无关信息的干扰,由此快速获得解题思路,提高解题的有效性,收到化繁为简、化难为易的良好效果.
  • 利用不等式模型解实际问题
  • 利用不等式模型解题是指,当问题中含有不等量关系(即有大于、小于、不大于、不小于、超过、至多、至少等词语)时,把所求问题用不等式(组)表示出来,然后解不等式(组)使问题获解.实际生活中,投资决策、最优化等问题常用到不等式的知识,
  • 证明不等式的常用方法
  • 美国著名数学家贝肯巴赫说:“数学是一门创造性艺术.数学的基本结果往往是不等式,而不是等式”.纵观近年来各地的初中数学试卷,不等式的问题屡见不鲜,其中以不等式的证明题型最为普遍.本文就这类问题常用的几种证明方法作一些归纳总结,供大家参考.
  • 整体思考 化难为易
  • 整体思想是指在解题中,从整体考虑问题,而不是着眼于问题的局部,由整体人手,把一些看似彼此独立,实质上紧密相联的量作为整体,通过研究问题的整体形式,整体结构,整体与局部的内在联系来寻找解题的捷径,提高解题的速度和准确率.
  • 例谈换元法在因式分解中的应用
  • 因式分解作为一种重要的恒等变形手段,在数学中有着广泛应用.因式分解的:方法较多,现行初中数学教材只是介绍了提公因式法、公式法、分组分解法等,在实际解题中,有时还需要用到换元法、配方法、待定系数法等.本文仅举例说明换元法在因式分解中的不同应用.
  • 由一道习题看“错位中点”问题的解法
  • 所谓“错位中点”问题,是指题中出现不共端点的两条相交线段的中点.此时题目中的图形有别于我们熟悉的一些基本图形,所以常常令我们的解题思路受阻.下面通过一道习题介绍这类问题的一般解法.
  • 例说用判别式解其它问题
  • 我们知道,一元二次方程的判别式是一元二次方程根的“检测器”,即可判定一元二次方程实根的各种情形.除此之外,它在其它许多方面有着广泛的应用:如建立等式、不等式,求方程中参数值或取值范围,证明与方程相关的代数问题,构造一元二次方程必定有解的代数模型,探究几何存在性问题等等.
  • 也谈一道竞赛题的通法求解
  • 题目(2011年全国初中数学竞赛题) 如图1,△ABC中,<BAC=60°,AB=2AC,
  • 一道2011年中考压轴题赏析
  • 题目(江苏省淮安市2011年中考压轴题).如图1,在RtZXABC中,<C=90°,AC=8,BC=6,点P在AB上,AP=2,点E、F同时从点P出发,分别沿PA、PB以每秒1个单位的速度向点A、B匀速运动,
  • 对一道经典题目的思考
  • 在《相似形》一章的学习中,我们会遇到这样一道题目:现有一块直角三角形木块,两条直角边AB和BC长分别为3m、4m,想要把它加工成一个面积尽可能大的正方形桌面,甲、乙两人的加工方法分别如图1和2所示,你会用所学过的知识说明谁的加工方法更符合要求吗?
  • 由一道中考题的错解谈分类讨论
  • 有一道中考题,题目如下: 已知关于z的函数y=ax^2+x+1(a为常数).
  • 勾股(逆)定理应用由的易错点
  • 勾股定理的逆定理:若一个三角形的三边a,b,c满足a^2+b^2=c^2,那么这个三角形就是直角三角形,
  • 整数与偶数,“牵手”辨多少
  • 如果我问你:“整数与偶数,哪一种数多?”恐怕不少同学都会说:“当然整数比偶数多了.”进一步,恐怕还会有同学说:“偶数的个数是整数个数的一半!”他们说得是什么道理呢?
  • 这些题目中隐含着相同的条件
  • 数学中常常会有些隐含在题目中的条件,这些隐含条件往往是解决问题的关键,却容易被忽视而感觉无从下手或造成错解.下面的这些题目中隐含着相同的条件:二次根式的被开方数≥0.以下举例说明如何利用这样的隐含的条件来解决问题.
  • 这样解对吗?
  • 引例 如图1,一圆柱的底面半径为5dm,BC为底面直径,棱AB:5dm,求一只蚂蚁从A点出发沿圆柱表面爬行到C点的最短路线.
  • 《初中数学教与学》封面

    主管单位:江苏省教育厅

    主办单位:扬州大学

    主  编:姚林

    地  址:江苏省扬州大学瘦西湖校区

    邮政编码:225002

    电  话:0514-7975297

    国际标准刊号:issn 1007-1849

    国内统一刊号:cn 32-1392/g4

    邮发代号:28-152

    单  价:3.90

    定  价:46.80


    关于我们 | 网站声明 | 合作伙伴 | 联系方式
    金月芽期刊网 2017 触屏版 电脑版 京ICP备13008804号-2