随着多种多样新型网络应用的涌现,传统的路由配置模式越来越难以适应用户多样化的数据通信需求.因此,需要依据用户对不同类型应用差异化的通信需求,在数据分组的传输路径上配置合适的路由功能,自适应地合成满足分组传输特性的路由服务,改善用户体验.根据由大数据带来的数据间关联关系新范式,文中试图从大量的应用通信流状态数据中,分析和获取用户体验与路由服务各属性之间的依赖关系,促进高效地实现路由服务的定制化.鉴于此,文中提出了大数据驱动的自适应路由服务定制机制(Big data driven Adaptive Routing service Customization scheme,BARC),以网内大量流状态数据为驱动,建立了用户需求属性模型,挖掘用户体验对路由需求的依赖关系,获得候选路由功能集合;考虑商业化运营模式下用户和网络服务提供商之间的利益关系,提出了双方利益共赢的博弈策略,获得符合双方利益的最佳路由服务定制化方案.仿真实现和性能评价表明,文中提出的大数据驱动的自适应路由服务定制机制是可行和有效的.
不动点迭代广泛存在于数据挖掘和机器学习算法中,这些算法已应用到诸如社会网络分析、高性能计算、推荐系统、搜索引擎、模式识别等诸多领域中.在云计算环境中,利用MapReduce编程模型所带来的便利,通过普通的PC集群运行相应的迭代算法,可以提高迭代算法的执行效率.但由于数据的快速变化,每当数据发生改变,整个迭代算法也需要重新运行,这将会导致大量的运算资源浪费和性能损失.文中研究基于原始迭代结果和新增数据的增量迭代计算DELTA(Delta data based incrEmentaL iTerAtive computing),并提出DELTA模型以解决上述问题.文中理论证明了DELTA模型的正确性,阐述了其适用范围,并列举了PageRank、K-means和Descendant Query算法在DELTA模型中的运用.文中还扩展HaLoop为ΔHaLoop框架,使其支持增量式的迭代计算.通过一系列的测试用例,对DELTA模型功能、性能进行了分析和讨论,实验结果表明DELTA模型在获得准确的迭代结果的基础上性能优势明显.文中提出的DELTA模型能够适应多数迭代算法,对云计算环境下的迭代计算的应用和优化起到推动作用.