设为首页 | 加入收藏
文献检索:
  • 高分子学科动态与2016年度指南
  • 结合2015-2016年新情况,概述近期高分子学科新动态,给出年度基金申请指南,指出基金申请中存在的一些问题。
  • 聚烯烃合金的研究进展(II)——分级方法、结构调控与性能
  • 聚烯烃合金是通过釜内聚合制备的多组成的聚烯烃材料。本文分别从聚烯烃合金的分级方法、组分和性能等方面对聚烯烃合金结构与性能进行了评述,重点介绍了溶剂抽提分级法、温度梯度分级法、升温淋洗分级法、等温热分级法和逐步结晶分级法等聚烯烃合金分级方法的原理,特别关注了聚丙烯/橡胶弹性体合金、聚丙烯/聚乙烯合金及聚丙烯/聚丁烯合金的组成与性能。并分析了聚烯烃合金的发展趋势。
  • 外敷用高分子材料研究进展
  • 皮肤受损后需要立即使用外敷材料,从而加速止血、保护创面、防止细菌感染,并促进创面愈合。本文在介绍伤口的分类和敷料的选择的基础上,就典型的敷料制备、干燥和成型技术,以及目前常见的外敷材料药物负载方法进行了概述。其次,重点阐述了天然高分子和合成高分子外敷材料的最新研究进展。其中天然高分子因其生物相容性好、生物可降解等特点,常用于治疗烧伤、创伤引起的皮肤和组织缺损。而合成高分子优点为:具有很长的保质期、较强的机械性能和较低的炎症反应,几乎没有携带病菌并传播的风险。目前,改性天然高分子、合成高分子及其复合材料已经在生物医药、材料学领域受到越来越多的关注。纳米技术和药物控释技术的发展,将会大大推动外敷材料的研究开发并拓宽其应用领域。
  • 温敏性氨基酸-聚合物杂化材料的研究进展
  • 温敏性聚合物在组织工程、药物传递和缓释、生物传感器以及纳米药物中有着广泛的应用。聚N-异丙基丙烯酰胺,聚甲基丙烯酸寡聚乙二醇酯以及吡咯烷酮基聚合物是典型的温敏性聚合物。然而,这些温敏性聚合物功能相对单一。现代科技的发展,对温敏性材料提出了新的要求,如具有多重刺激响应特性、生物相容性好、可生物降解以及其他功能。氨基酸是两性分子,具有手性、生物相容性好、多官能团、二级结构丰富等优点。以氨基酸或多肽构筑温敏聚合物可以将聚合物的多样性与氨基酸的优点结合起来,本文介绍了此类材料的合成及研究进展。
  • 表面改性聚丙烯的血液相容性研究进展
  • 聚丙烯具有价格低廉、无毒、易于加工等优点,使其在许多领域得到广泛的应用。但是聚丙烯自身有较强的疏水性,与血液相接触时,血浆蛋白会在材料表面大量吸附,诱发血小板的粘附和聚集,从而造成凝血和溶血的发生。在生物医用材料的应用过程中,血液相容性是限制材料能否长期应用的关键因素。本文综述了表面改性法提高聚丙烯血液相容性的研究现状、表面改性方法和常用的大分子单体,并分析了当前聚丙烯表面改性研究存在的问题,展望了具有良好血液相容性聚丙烯的发展前景。
  • 碳量子点及其性能研究进展
  • 碳量子点(CarbonQuantumDots,CQDs)是一种新型的碳纳米材料,因其强的量子限域效应和稳定的荧光性能等一系列优异性能,吸引了化学、物理、材料和生物等各领域科学家的广泛关注。相比传统半导体金属量子点,CQDs还具备优异的低毒性和生物相容性,更拓宽了其在生物领域内的研究前景。本文简要地介绍了CQDs的制备方法,主要包括自上而下和自下而上两个方向。除此之外,本文综述了CQDs突出的物理化学性质和性能,包括CQDs的荧光性能、生物相容性和上转换效应,并对CQDs在其在生物成像上的应用进行了归纳。
  • 原位聚合法制备聚磷酸铵微胶囊及其应用的研究进展
  • 以聚磷酸铵微胶囊阻燃剂的包覆壳材料为重点,综述了聚磷酸铵微胶囊阻燃剂的无机材料包覆、有机材料包覆、双层或多层包覆以及纳米材料包覆,总结了国内外关于原位聚合法制备聚磷酸铵微胶囊的最新研究进展。介绍了聚磷酸铵微胶囊形成过程中,包覆壳材料与聚磷酸铵的原位聚合方法及机理。并且提出了聚磷酸铵阻燃剂在材料燃烧过程中存在的协同效应。最后,结合聚磷酸铵微胶囊阻燃剂在阻燃过程中存在的问题,展望了原位聚合在微胶囊阻燃领域中的未来发展方向。
  • 分子结构对环氧树脂性能影响的分子模拟研究
  • 采用分子动力学方法建立了二乙基甲苯二胺/双酚A缩水甘油醚环氧树脂体系(DETDA/DGEBA体系)和间苯二胺/双酚A缩水甘油醚环氧树脂体系(mPDA/DGEBA体系)的交联模型,在此基础上,分析了固化剂分子结构的差异对树脂性能的影响,研究发现mPDA/DGEBA体系的玻璃化转变温度、模量以及阻碍水分子的扩散性能均高于DETDA/DGEBA体系。为了进一步揭示交联环氧树脂分子结构与性能之间的关系,研究了上述两体系的自由体积和内聚能密度。结果表明,与DETDA/DGEBA体系相比,mPDA/DGEBA体系具有较小的自由体积和较高的内聚能密度。较小的自由体积和较高的内聚能密度是造成mPDA/DGEBA体系玻璃化转变温度、模量以及阻碍水分子的扩散性能均高于DETDA/DGEBA体系的原因。
  • 复合酶耦合酶解酸处理后玉米秸秆的研究
  • 以玉米秸秆为研究对象,经过2%硫酸预处理后,利用果胶酶、β-葡萄糖苷酶、纤维素酶三种酶协同酶解,以提高玉米秸秆的酶解产糖量。结果表明:当酶解时间为48h,果胶酶、B—葡萄糖苷酶、纤维素酶分别为45U/mL、30U/mL、60U/mL时,葡萄糖、木糖和酶水解得率分别为67.83%、3.25%、73.65%,相比纤维素酶单一酶解的葡萄糖、木糖和酶水解得率分别提高了65.04%、2Q82%、65.06%。分步糖化发酵5天后,相比单一酶解发酵乙醇含量提高了7z5%。说明利用三种酶复合处理,能明显提高酶解产糖量。研究结果为玉米秸秆转化为可发酵糖技术的研究提供重要参考。
  • 成型方式对不同木塑复合体系的性能影响研究
  • 以木粉为填充材料,以PE(聚乙烯)、PP(聚丙烯)为塑料基体,分别采用混炼模压工艺和挤出啦塑工艺制备木塑复合材料,对比研究不同复合材料的力学性能、热性能以及流变性。结果表明,混炼模压工艺制备的PE基复合材料综合性能较优,而挤出啦塑工艺制备的PP基复合材料综合性能较优,且在PE塑料系列中,HDPE(高密度聚乙烯)基复合材料综合力学性能最好,LLDPE(线性低密度聚乙烯)基复合材料的冲击韧性最好,但其综合力学性能较差。
  • 具有氢键结构的有机材料及聚合物材料的压力诱导位移突变
  • 利用纳米压痕技术研究了具有氢键结构的聚乙烯醇(PVA)和聚甲基丙烯酸甲酯(PMMA)的表面力学行为。与PMMA薄膜相比,在PVA薄膜的载荷啦移曲线上观察到了明显的位移突变现象。从结构差异分析可知,氢键诱导PVA薄膜产生了位移突变。为了证明结构中氢键与纳米压痕所获得的位移突变的相关性,制备了对苯二酚单晶并利用纳米压痕技术测试对苯二酚单晶的表面力学行为。结果表明,对苯二酚单晶具有氢键笼状结构,对苯二酚单晶的载荷啦移曲线载荷阶段以及保载小于临界载荷的位移时间曲线均观察到了明显的位移突变和蠕变突变现象,并且载荷阶段的位移突变量随临界载荷的增加呈线性增加,同时位移突变还与加载速率相关。
  • 不同形貌聚苯胺的合成及其在电化学中的应用研究进展
  • 综述了不同形貌聚苯胺(PANI)的合成及其在电化学中的应用研究进展,阐述了PANI形貌的分类及其制备方法,着重介绍了化学氧化聚合法合成不同形貌的PANI,并讨论了苯胺的浓度、氧化剂的浓度、温度、pH值、表面活性剂、掺杂剂等参数对PANI形貌的影响。此外,本文还概述了PANI在超级电容器、传感器、防腐材料等领域的应用。
  • 地方高校高分子材料与工程专业生产实习协同创新模式探讨
  • 地方高校已成为我国高等教育的重要组成部分,由于办学目标、生源构成、服务地区不同于部属高校,其生产实习教学环节面临各种困境。寻求有效的途径突破生产实习的困境成为当前各地方高校亟待解决的问题。本文以广东工业大学为例,在分析该校的办学特点以及高分子材料与工程专业近年来生产实习状况的基础上,介绍该校以大学联盟为平台的生产实习新模式,并详细说明其实施方案。该模式基于该校的协同创新战略,已取得良好的教学效果。
  • 高分子化学课程教学中的辩证思维
  • 高分子化学是高分子学科重要的基础课程,在课程教学过程中培养学生的辩证思维能力,使学生学会用对立统一和发展变化的眼光看待问题,对提高学生的科研和技术开发能力至关重要。教师在授课过程中应运用辩证思维的方法,深入发掘课程内容中的思想精髓,同时充分利用文献资源中体现出来的思想方法,与课程内容广泛联系,引导学生进行深入讨论,使学生养成从不同角度全面深入思考问题的习惯,提高发现问题和解决问题的能力,逐步形成科学思维能力。
  • 高分子材料工程硕士创新实验能力培养模式研究
  • 结合国内外的工程硕士教学现状,通过分析国内工程硕士的课题研究方向和企业需要解决的问题存在脱轨现象、上理论课时间不足等问题,在借助于国外先进经验的基础上,提出了双导师制、灵活培养模式,确保创新实验能力培养的效果,为企业培养“留得住,用得上”的高分子材料工程实践实力和创新能力的应用型高级人才。通过对工程硕士创新实验能力培养模式的实践与探索,使工程硕士研究生在理论知识和动手能力及创新思维积累方面得到一定的提高。
  • 《高分子通报》封面

    主管单位:中国科协

    主办单位:中国化学会

    主  编:黄志镗

    地  址:北京2709信箱

    邮政编码:100080

    电  话:010-62588926

    电子邮件:gfztb@iccas.ac.cn

    国际标准刊号:issn 1003-3726

    国内统一刊号:cn 11-2051/o6

    邮发代号:80-294

    单  价:16.00

    定  价:192.00


    关于我们 | 网站声明 | 合作伙伴 | 联系方式 | IP查询
    金月芽期刊网 2017 触屏版 电脑版 京ICP备13008804号-2