设为首页 | 加入收藏
文献检索:
  • 环丁醇开环官能化反应:通过C—C键断裂区域选择性构建γ位取代脂肪酮的新策略
  • 环丁醇开环官能化反应是制备γ位取代脂肪酮的重要策略之一。通过区域选择性的C—C键断裂和新化学键(例如:C—C、C—N、C—O、C—F键等)的构建,环丁醇开环反应可以高效地在羰基的γ位引入各种各样的取代基团。环丁醇的开环反应途径主要分为两种:1)通过过渡金属钯和铑催化的β-碳消除反应开环;2)自由基历程的环丁醇单电子氧化开环。本文依据不同的开环反应机理,对环丁醇的开环官能化反应进行了阐述和展望。
  • 灌注液体型光滑多孔表面制备及应用
  • 仿猪笼草效应的灌注润滑液的光滑多孔表面(SLIPS)是将润滑液如全氟聚醚、硅油、离子液体等灌注到微/纳粗糙结构基材中制备的。SLIPS材料表面可达到分子尺度的光滑,能显著减小液滴滑动角和滞后角,具有全方位疏液、自修复、透明度高、温度和压力稳定性好等诸多优点,能够高效抑制各种基材包括油脂、血液、冰以及生物膜的黏附,在自清洁涂料、海洋防污、生物医用领域具有广阔的应用前景。近年来SLIPS材料因其具有的特殊表面润湿性能而备受研究者的关注,本文详细介绍了SLIPS材料的构建机理和制备方法,包括浸润法和溶胀法等。综述了SLIPS材料在防污、促进滴状冷凝、防霜防覆冰、油水分离等方面的最新进展,并对SLIPS目前存在的问题与发展方向进行了分析和展望。
  • 基于石墨烯及其衍生物的信息存储:材料、器件和性能
  • 石墨烯以其独特的二维结构和高的热导电性、高杨氏模量、高电子/空穴迁移率、高抗拉强度、大的布鲁诺尔-埃米特-特勒表面积和量子霍尔效应等优异性能,备受科研工作者的关注,迅速成为材料、化学、物理和工程领域的热点研究课题。与富勒烯(C_(60)、C_(70))的功能化一样,利用共价键合修饰或非共价键合修饰的方法可以在石墨烯表面或石墨烯体系中引入功能基团或功能组分,制备出种类繁多的具有特殊光、电、磁和生物效应的石墨烯衍生物。以石墨烯作为数据存储介质的分子级别计算已经引发了一场信息技术产业的革命,它能在更小的空间上,使用更少的能源来存储更多的数据信息,有望成为目前基于硅半导体存储技术的潜在替代或补充技术。基于石墨烯的存储器件展现出优良的数据存储性能、器件稳定性和可靠性,为使这类器件具有更好的实际应用前景,人们采用许多技术手段来调控和优化器件性能。本文综述了近年来引起广泛关注的诸如石墨烯、共价修饰的石墨烯、石墨烯基复合材料、石墨烯/无机材料异质结等基于石墨烯及其衍生物的存储器件及相关材料研究进展,以及石墨烯/还原的氧化石墨烯透明电极在存储器件中的应用。探讨了该领域存在的亟待解决的关键基础问题和未来发展方向。
  • 二氧化钛在钙钛矿太阳电池中的应用
  • 纳米TiO_2由于具有合适的禁带宽度、良好的光电化学稳定性、制作工艺简单等特点,目前广泛应用于染料敏化、量子点和钙钛矿等太阳电池中。作为电池的重要组成部分之一,纳米TiO_2晶体尺寸、颗粒大小和制备方法等明显影响电池的光伏性能,相关研究工作一直是染料敏化、量子点和钙钛矿等太阳电池方面的重点。本文综述了纳米TiO_2作为致密层和骨架层在钙钛矿太阳电池中的应用研究进展,主要讨论了纳米TiO_2的不同形貌、制备方法以及结构等对电池光电性能的影响,并针对纳米Ti O2在后续对电池性能提升方面进行了展望。
  • 主链或侧链含二茂铁的聚合物的合成和应用
  • 由于二茂铁基聚合物独特的结构和性能,其在电化学、生物医学及光学等领域具有广阔应用前景。开发新型二茂铁基聚合物并探索其应用已经成为科研工作者的研究热点。本文主要综述主链或侧链含二茂铁的聚合物的合成及应用。其中合成主链含二茂铁的聚合物的方法主要有缩聚法和开环聚合法等。合成侧链含二茂铁的聚合物的方法主要有自由基聚合法、原子转移自由基聚合法和可逆加成断裂链转移聚合法等。最后,对二茂铁基聚合物的应用前景进行了展望。
  • 用于DNA合成测序的可断裂连接单元研究现状
  • DNA测序技术是遗传基因组相关疾病研究的基础。合成测序是DNA二代测序技术中非常重要的一种。合成测序技术能够有效地实现大规模平行测序,大大提高测序通量的同时也降低成本,目前已得到广泛的应用。在合成测序中,首先需要合成荧光素标记的核苷酸,作为能够参与DNA链延伸的循环可逆终端。已有文献报道的可逆终端结构主要包括单位点修饰(MRT)和双位点修饰(DRT)两种类型。DRT类型可逆终端的最大优势是DNA聚合酶容易识别且合成路线简单,能够较好地应用于DNA合成测序。在此过程中可断裂连接单元将核苷酸和荧光素连接起来,它的性质直接决定了测序的效率、读长等关键指标。本文主要对目前用于DNA合成测序的可断裂连接单元研究现状进行介绍,并对其发展前景进行了展望。
  • 微纳米粒子的形貌调控及其对药物/基因传递体系的影响
  • 超分子组装体由于具有适合的微纳米尺寸、可控的结构和良好的生物相容性等特点,极大地促进了药物/基因传递体系的发展。拓扑结构(如形貌、尺寸)是影响药物/基因传递体系的重要因素,这方面研究正成为这一领域的研究热点。本文综述了调控组装体形貌的主要手段,包括聚合物链结构与组成、组装条件、外界刺激及聚合诱导的组装体形貌,初步探讨了微观形貌对药物/基因传递体系的影响,并对这一领域进行了展望。
  • 碳酸钙模板法制备高分子微球
  • 模板法是一种制备粒径可控、形貌均一微球的有效途径。以球霰石形态存在的CaCO_3多孔微球具有生物相容、孔径均一,以及可在温和条件下分解等优点,适用于作为模板制备微球。本文在对CaCO_3模板进行简单介绍的基础上,从原料选取与应用角度综述了用CaCO_3模板法制备微球的研究进展。常用的装载CaCO3多孔微球的方法有物理吸附、共沉淀和渗透法等,所用原料有天然高分子(如多糖、蛋白质、DNA)和合成高分子(如聚苯乙烯磺酸钠、聚乙烯醇)。利用CaCO_3模版制备的微球具有多孔洞或空心结构,尺寸形貌均一可控,特别适用于制药、药物递送、生物传感器及化学分析等领域。预计随着纳米技术的发展和生物医药领域的需求将推动CaCO_3模板法的研究,以期通过该方法制备出应用领域更加广泛的微球。
  • 重金属离子印迹技术
  • 分子印迹技术(molecular imprinting technology,MIT)是指制备对特定目标分子具有专一识别性能的聚合物技术。离子印迹技术(ion imprinting technology,IIT)以离子为模板,通过静电作用、配位作用等与单体结合形成螯合物,聚合后用酸性试剂等将模板离子洗脱,最终制得具有与目标金属离子相对应的三维孔穴结构的印迹材料。作为分子印迹技术的重要分支,离子印迹技术因存在配位作用而具有很多优势,近年来得到了快速的发展。重金属离子是离子印迹领域最典型且最受关注的目标物。本文介绍了离子印迹技术原理、制备及其在金属的痕量和超痕量分析中的优势,针对环境监测中典型重金属污染离子(铅、汞、铜、镉、铬、砷)的印迹聚合物应用进行了简述,并对金属离子印迹技术未来的挑战与发展作出了展望。
  • 铁蛋白表面修饰及其应用
  • 铁蛋白是一种广泛存在的储铁蛋白,具有纳米尺寸的水合氧化铁内核和笼形结构的蛋白质外壳。通过对铁蛋白壳的修饰或核的改造已成功构建出多功能肿瘤诊断和药物输送系统。近年来对铁蛋白的修饰研究主要集中在:(1)通过对铁蛋白内表面的修饰使铁蛋白壳内包裹上特定药物或者促进纳米材料的合成;(2)通过对铁蛋白外表面的修饰与PEG或抗体连接以扩展新的功能;(3)通过铁蛋白外表面或亚基间接触面的修饰控制铁蛋白的自组装。目前从铁蛋白修饰角度来阐明铁蛋白应用的研究较少。本文综述了近年来铁蛋白表面修饰的研究进展,介绍了铁蛋白表面化学修饰和生物修饰的方法,并进一步阐述了经修饰后铁蛋白纳米材料在生物医学、诊断学、纳米电子学等领域的应用。最后探讨了目前铁蛋白表面修饰研究方向及需解决的问题,提出了将铁蛋白生物修饰和化学修饰两种方法相结合是未来发展方向之一。本工作旨在为铁蛋白的进一步开发利用提供一些可能的思路。
  • 木质纤维素催化转化制备能源平台化合物
  • 可再生生物质资源的能源化利用能有效缓解能源短缺和环境恶化的双重压力。木质纤维素类生物质原料通过催化转化途径可以转化成为用途广泛的平台化合物,如呋喃类化合物、多元醇和有机酸及其酯类衍生物等。以这些平台化合物为原料,通过基元反应的转化可以制备高附加值的生物质基液体燃料。基于上述背景,本文概述了国内外木质纤维素通过不同催化转化途径制备各种新能源平台化合物的研究进展。目前木质纤维素制备新能源平台化合物的可行途径主要包括液体酸催化、固体酸催化、离子液体催化和多功能材料催化。在介绍这些催化途径的同时,重点讨论了所使用的催化剂,分析了仍然存在的问题和可能的解决措施,同时对今后该领域的研究前景进行了展望。
  • Belousov-Zhabotinsky反应驱动的智能高分子材料:拓扑结构及仿生功能
  • 化学自振荡反应驱动的智能高分子材料常被称为自振荡高分子材料(self-oscillating polymer materials,SOPMs),其中以Belousov-Zhabotinsky(BZ)反应驱动的SOPMs研究最为深入,为高分子材料领域的一大研究热点。与传统智能高分子材料不同,SOPMs体系具有高度的自调节性,即可以不需要外界"开-关"转换的刺激就能自动、可逆、周期性地发生状态转变。本文结合SOPMs的最新研究结果,介绍该类材料在新型拓扑结构设计和仿生功能研究两个方面的新思想和新方法。在拓扑结构设计方面,主要介绍梳形自振荡高分子凝胶、"聚轮烷"互锁自振荡高分子凝胶、多级结构自振荡高分子凝胶、超级交联自振荡高分子凝胶、支化自振荡高分子、自振荡高分子刷以及嵌段自振荡高分子材料。在仿生功能研究方面,主要阐述自振荡高分子囊泡、人工细胞、自主肠状运动、趋光避光运动。最后,对SOPMs今后的发展作了展望。
  • 水热炭的制备、性质及应用
  • 水热炭是一种以生物质或其组分为原料,以水为溶剂和反应介质,在150~375℃和自生压力下,经水热反应得到的以碳为主体,含氧官能团丰富,热值(HHV)高的黑色固体产物。水热炭的性质主要受原料种类、反应温度和时间的影响。水热炭在吸附、多孔炭制备、催化剂载体和清洁能源等领域展现出了良好的应用前景。本文综述了水热炭的制备、性质和形成机理,并对水热炭的应用进行了总结,对水热炭未来的发展方向进行了展望。
  • 类石墨相C_3N_4光催化剂改性研究
  • 半导体光催化技术不仅可以将太阳能转化为化学能,还可以直接降解和矿化有机污染物,因此其在抑制环境污染和解决能源短缺方面具有广阔的应用前景。类石墨相氮化碳(g-C_3N_4)具有独特的电子能带结构、优异的热稳定性以及化学稳定性,因此g-C_3N_4作为一种廉价的无金属光催化剂被广泛应用于光解水制氢产氧、污染物降解、光催化CO2还原、抗菌和有机官能团选择性转换等领域。然而,传统热缩聚法合成的g-C_3N_4光催化剂比表面积小、禁带宽度大、光生电子-空穴易于复合、光生载流子传输慢,抑制了其光催化活性。为了进一步提高g-C_3N_4的光催化活性,出现了多种改性方法。本文针对g-C_3N_4光催化剂的改性研究,综述了近年来国内外在g-C_3N_4光催化剂改性方面的重要研究进展,如采用模板法优化g-C_3N_4的纳米结构、元素掺杂及共聚合调控g-C_3N_4的能带结构、贵金属沉积或半导体复合提高光生载流子分离效率等。最后,本文还展望了g-C_3N_4光催化剂在改性方面的未来发展趋势。
  • 蛋白表面分子印迹技术
  • 蛋白印迹材料在生物分离、生物传感和医用生物材料等领域具有很强的应用价值并受到广泛关注。尽管小分子印迹技术已经成功应用于很多领域,但蛋白分子印迹仍然是挑战性研究课题。本文总结了蛋白表面印迹技术领域的研究进展,根据不同的蛋白表面印迹材料,详细叙述了蛋白表面分子印迹薄膜、核壳微球、纳米线、凝胶微粒、单层膜等印迹材料的制备过程、印迹方法和选择识别性能,讨论了蛋白表面分子印迹方法的优缺点,阐明了蛋白分子印迹未来发展的方向。
  • 致谢
  • [综述与评论]
    环丁醇开环官能化反应:通过C—C键断裂区域选择性构建γ位取代脂肪酮的新策略(晏宏;朱晨)
    灌注液体型光滑多孔表面制备及应用(韦存茜;严杰;唐浩;张庆华;詹晓力;陈丰秋)
    基于石墨烯及其衍生物的信息存储:材料、器件和性能(孙赛;庄小东;汪露馨;汪诚;张斌[1,3];陈彧)
    二氧化钛在钙钛矿太阳电池中的应用(阙亚萍;翁坚;胡林华;戴松元[1,2])
    主链或侧链含二茂铁的聚合物的合成和应用(金亨到;王立;俞豪杰;童荣柏;周卫东)
    用于DNA合成测序的可断裂连接单元研究现状(姜玉;谭连江;殷燕;沈玉梅;龚兵;邵志峰)
    微纳米粒子的形貌调控及其对药物/基因传递体系的影响(刘亚杰;张鹏;杜建委;王幽香)
    碳酸钙模板法制备高分子微球(王荣民;吕思瑶;李涛;何玉凤;宋鹏飞)
    重金属离子印迹技术(傅骏青[1,2];王晓艳[2,3];李金花;陈令新[1,2])
    铁蛋白表面修饰及其应用(杨彩云[1,2,3];曹长乾[1,2];蔡垚[1,2,3];张同伟[1,2];潘永信[1,2])
    木质纤维素催化转化制备能源平台化合物(袁正求[1,2];龙金星;张兴华;夏莹[1,2];王铁军;马隆龙)
    Belousov-Zhabotinsky反应驱动的智能高分子材料:拓扑结构及仿生功能(周宏伟;丁小斌)
    水热炭的制备、性质及应用(吴艳姣;李伟;吴琼;刘守新)
    类石墨相C_3N_4光催化剂改性研究(徐建华;谈玲华[1,2];寇波[1,2];杭祖圣[1,2];姜炜;郏永强)
    蛋白表面分子印迹技术(张现峰;杜学忠)
    致谢
    《化学进展》封面
      2010年
    • 01

    主管单位:中国科学院

    主办单位:中国科学院基础研究局 化学部 文献情报中心

    主  编:王夔

    地  址:北京中关村四环西路33号

    邮政编码:100080

    电  话:010-82627757

    电子邮件:scinfo@mail.las.ac.cn

    国际标准刊号:issn 1005-281x

    国内统一刊号:cn 11-3383/o6

    邮发代号:82-645

    单  价:100.00

    定  价:1200.00


    关于我们 | 网站声明 | 合作伙伴 | 联系方式 | IP查询
    金月芽期刊网 2018 触屏版 电脑版 京ICP备13008804号-2