设为首页 | 加入收藏
文献检索:
  • Calcium phosphate deposition on surface of porous and dense TiNi alloys in simulated body fluid 免费阅读 下载全文
  • Porous and dense TiNi alloys were successfully fabricated by powder metallurgy(P/M) method, and to further improve their surface biocompatibility, surface modification techniques including grind using silicon-carbide(SiC) paper, acid etching and alkali treatment were employed to produce either irregularly rough surface or micro-porous surface roughness. X-ray diffractometry(XRD), scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDX) attached to SEM were used to characterize surface structure and the Ca-P coatings. Effects of the above surface treatments on the surface morphology, apatite forming ability were systematically investigated. Results indicate that all the above surface treatments increase the apatite forming ability of TiNi alloys in varying degrees when soaked in simulated body fluid(SBF). More apatite coatings formed on TiNi samples sintered at 1050℃ and 1100℃ due to their high porosity and pure TiNi phase that is beneficial to heterogeneous nucleation. Furthermore, more uniform apatite was fabricated on the sample sintered from the mixture of Ni and Ti powders.
  • Analysis of 13Cr bloom solidification structure using CA-FE model 免费阅读 下载全文
  • Solidification structure is critical in the control of the mechanical properties and quality during the continuous casting process. The thermo-physical properties of 13 Cr steel added some rare metals, such as Mo, V, Nb, are measured to better understand the solidification structure of 13 Cr bloom. A computational model using CA-FE(cellular automation-finite element) method coupled with heat transfer model is developed to describe the solidification structure in continuous casting process. It is found that the calculated solidification structure is in good agreement with the observed data. The influence of casting speed and superheat on the solidification structure of the bloom is studied in detail. In order to obtain more equiaxed crystal ratio and low degree of the segregation in the bloom, the optimized casting speed 0.6 m/min and superheat less than 25 °C are determined for the caster. Using the optimized manufacturing parameters, these samples are 60% with the equiaxed zone ratio of 8%–10% and below the degree of segregation 1.05.
  • Room temperature gas sensor based on tube-like hydroxyapatite modified with gold nanoparticles 免费阅读 下载全文
  • The main goal of this work is to explore the possibility of using Au-modified hydroxyapatite(HA) as a potential sensor material. Tube-like HA structure was fabricated with the aid of a Nafion N-117 cation exchange membrane and gold(Au) nanoparticles were added by a hydrothermal method. The morphology, structure and composition were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), and X-ray photoelectron spectroscopy(XPS). The gas sensing properties were also investigated. Results show that Au nanoparticles are dispersed into the HA powder, which is tube-like, with rough inner and outer surfaces. Compared with pure HA, Au-modified HA exhibits improved sensing properties for NH3. 5%(mass fraction) Au-modified HA shows the highest response with relatively short response/recovery time. The response is up to 79.2% when the corresponding sensor is exposed to 200×10-6 NH3 at room temperature, and the response time and recovery time are 20 s and 25 s, respectively. For lower concentration, like 50×10-6, the response is still up to 70.8%. Good selectivity and repeatability are also observed. The sensing mechanism of high response and selectivity for NH3 gas was also discussed. These results suggest that Au-HA composite is a promising material for NH3 sensors operating at room temperature.
  • Delamination analysis of woven fabrication laminates using cohesive zone model 免费阅读 下载全文
  • A new test method was proposed to evaluate the cohesive strength of composite laminates. Cohesive strength and the critical strain energy for Mode-II interlamiar fracture of E-glass/epoxy woven fabrication were determined from the single lap joint(SLJ) and end notch flexure(ENF) test, respectively. In order to verify their adequacy, a cohesive zone model simulation based on interface finite elements was performed. A closed form solution for determination of the penalty stiffness parameter was proposed. Modified form of Park-Paulino-Roesler traction-separation law was provided and conducted altogether with trapezoidal and bilinear mixed-mode damage models to simulate damage using Abaqus cohesive elements. It was observed that accurate damage prediction and numerical convergence were obtained using the proposed penalty stiffness. Comparison between three damage models reveals that good simulation of fracture process zone and delamination prediction were obtained using the modified PPR model as damage model. Cohesive zone length as a material property was determined. To ensure the sufficient dissipation of energy, it was recommended that at least 4 elements should span cohesive zone length.
  • Kinetic study on leaching of nickel from Turkish lateritic ore in nitric acid solution 免费阅读 下载全文
  • Dissolution kinetics of nickel from lateritic ore in nitric acid solution was investigated. Experimental parameters used were stirring speed(100-600 r/min), temperature(40-96 °C), nitric acid concentration(0.1-2 mol/L) and particle size(<106 μm). The shrinking core model was applied to the results of experiments investigating the effects of leaching temperature in the range of 40-90 °C and nitric acid concentration in range of 0.1-2 mol/L on nickel dissolution rate. The kinetic analysis shows that the nickel dissolution from lateritic ore could be described by diffusion model. The activation energy(E_a) for the dissolution reaction is calculated as 79.52 kJ/mol.
  • Numerical simulation of chemical vapor deposition reaction in polysilicon reduction furnace 免费阅读 下载全文
  • Three-dimensional model of chemical vapor deposition reaction in polysilicon reduction furnace was established by considering mass, momentum and energy transfer simultaneously. Then, CFD software was used to simulate the flow, heat transfer and chemical reaction process in reduction furnace and to analyze the change law of deposition characteristic along with the H2 mole fraction, silicon rod height and silicon rod diameter. The results show that with the increase of H2 mole fraction, silicon growth rate increases firstly and then decreases. On the contrary, SiHCl3 conversion rate and unit energy consumption decrease firstly and then increase. Silicon production rate increases constantly. The optimal H2 mole fraction is 0.8-0.85. With the growth of silicon rod height, Si HCl3 conversion rate, silicon production rate and silicon growth rate increase, while unit energy consumption decreases. In terms of chemical reaction, the higher the silicon rod is, the better the performance is. In the view of the top-heavy situation, the actual silicon rod height is limited to be below 3 m. With the increase of silicon rod diameter, silicon growth rate decreases firstly and then increases. Besides, SiHCl3 conversion rate and silicon production rate increase, while unit energy consumption first decreases sharply, then becomes steady. In practice, the bigger silicon rod diameter is more suitable. The optimal silicon rod diameter must be over 120 mm.
  • Effect and mechanism of siderite on reverse anionic flotation of quartz from hematite 免费阅读 下载全文
  • Reverse flotation technology is one of the most efficient ways to improve the quality and reduce impurity of iron concentrate. Mineral processors dealing with hematite face a challenge that the flotation results of reverse flotation of hematite are poor in presence of siderite using fatty acid as collector, starch as depressant of iron minerals and calcium ion as activator of quartz at strong alkaline pH. In this work, the effect of siderite on reverse anionic flotation of quartz from hematite was investigated. The effect mechanism of siderite on reverse flotation of hematite was studied by solution chemistry, ultraviolet spectrophotometry(UV) and Fourier transform infrared spectroscopy(FTIR). It was observed that siderite had strong depressive effect on quartz in flotation using sodium oleate as collector, corn starch as depressant of iron minerals and calcium chloride as activator of quartz at strong alkaline pH. The starch was adsorbed onto calcium carbonate by chemical reaction which was formed by CO2-3 from siderite dissolution and Ca2+ from calcium chloride as activator of quartz and precipitated on the surface of quartz, which resulted in improving the hydrophilic ability of quartz.
  • Rapid and simultaneous determination of ten off-flavor compounds in water by headspace solid phase microextraction and gas chromatography-mass spectrometry 免费阅读 下载全文
  • A simple and sensitive analytical procedure for the determination of multi-component compounds in water samples was developed and optimized using the headspace solid-phase microextraction(HSSPME) coupled with gas chromatography-mass spectrometry(GC-MS). Ten off-flavor compounds, including geosmin(GSM), 2-methylisoborneol(2-MIB), 2-isopropyl-3-methoxypyrazine(IPMP), 2-isobutyl-3-methoxypyrazine(IBMP), β-ionone, trans-2,cis-6-nonadienal(NDE), 2,3,4-trichloroanisole(2,3,4-TCA), 2,3,6-trichroloanisole(2,3,6-TCA), 2,4,6-trichloroanisole(2,4,6-TCA), and 2,4,6-tribromoanisole(2,4,6-TBA) were used as the target analytes. The optimization of extraction parameters including fibers types, extraction time, extraction temperature, stirring rate, sample volume, and ionic strength was carried out through the univariate approach. Ten off-flavor compounds were quantified within 50 min under the optimal conditions. Calibration curves with good linearity(r~2=0.990-0.998) were obtained in the range 1.0/2.0-100 ng/L, while the limits of detection for all compounds were lower than or close to the odor threshold concentration. Furthermore, the proposed method was applied to analyzing and determining the off-flavor compounds in real water samples from water-treatment plants.
  • Effect of gear teeth finishing method on properties of teeth surface layer and its resistance to pitting wear creation 免费阅读 下载全文
  • This work presented the characteristics of two gear teeth finishing methods, due to the properties of gear teeth surface layer obtained at the tooth working depth. These methods are: 1) the teeth carburization, hardening to a hardness of HRC 60-62 and then grinding, 2) the soft gear shaving as the final mechanical treatment and then carburizing and hardening to the hardness of HRC60-62. This work included the test results of the contact fatigue strength carried out on the circulating power system. The Wohler curves were plotted due to the obtained results, as the basis for the practical evaluation of the considered gear finishing methods. The parameters like volume distribution of the voids, content of the retained austenite, compressive residual stress value, but also the results of contact fatigue strength tests, are more favorable for the teeth shaving method than for the teeth grinding method.
  • Integrity of grinding face-gear with worm wheel 免费阅读 下载全文
  • Aiming at the issue of the grinding integrity of face-gear with worm wheel, the envelope mathematical model of shaper, worm wheel and face-gear is established based on theories of differential geometry and gear mesh. The judgment of completely grinding the face-gear with the avoidance of singularities is established, and the mathematical expression to show the reason why singularities appear is derived, through the research on the surface contact area and singularity rules of the worm thread surface. The disadvantage of current face-gear grinding method that only part of the working surface of the face-gear can be covered is analyzed and the influence of coefficient of judgment is studied through changing the design parameters.
  • Bifurcation and chaos study on transverse-torsional coupled 2K-H planetary gear train with multiple clearances 免费阅读 下载全文
  • A new non-linear transverse-torsional coupled model was proposed for 2K-H planetary gear train, and gear’s geometric eccentricity error, comprehensive transmission error, time-varying meshing stiffness, sun-planet and planet-ring gear pair’s backlashes and sun gear’s bearing clearance were taken into consideration. The solution of differential governing equation of motion was solved by applying variable step-size Runge-Kutta numerical integration method. The system motion state was investigated systematically and qualitatively, and exhibited diverse characteristics of bifurcation and chaos as well as non-linear behavior under different bifurcation parameters including meshing frequency, sun-planet backlash, planet-ring backlash and sun gear’s bearing clearance. Analysis results show that the increasing damping could suppress the region of chaotic motion and improve the system’s stability significantly. The route of crisis to chaotic motion was observed under the bifurcation parameter of meshing frequency. However, the routes of period doubling and crisis to chaos were identified under the bifurcation parameter of sun-planet backlash; besides, several different types of routes to chaos were observed and coexisted under the bifurcation parameter of planet-ring backlash including period doubling, Hopf bifurcation, 3T-periodic channel and crisis. Additionally, planet-ring backlash generated a strong coupling effect to system’s non-linear behavior while the sun gear’s bearing clearance produced weak coupling effect. Finally, quasi-periodic motion could be found under all above–mentioned bifurcation parameters and closely associated with the 3T-periodic motion.
  • Influence of cutter diameter on meshing performance in spiral bevel gears 免费阅读 下载全文
  • Playing a critical role in transmitting movement and power, the meshing performance of spiral bevel gears has a significant effect on products’ operational performance. To evaluate the meshing performance, the accurate three-dimensional(3D) spiral bevel gear models are established through the Pro/E and MATLAB softwares, and the finite element analysis(FEA) methods are applied to the theoretical investigation of the influence of cutter diameter on meshing performance in spiral bevel gears. The results obtained show that the cutter diameter has a significant influence on spiral bevel gears’ meshing performance, such as the contact area, contact pressure, bending stress, torsional stiffness and transmission error.
  • Filtering algorithm and direction identification in relative position estimation based on induction loop-cable 免费阅读 下载全文
  • A filtering algorithm and direction identification method are presented for the positioning system of the mid-speed maglev train. Considering the special structure of the mid-speed maglev train, the ground position estimation method is adopted for its traction system. As the train is running, the induction loop-cable receives the signal sent by the on-board antenna to detect the position and direction of the train. But the height of the on-board antenna relative to the loop-cable is highly vulnerable to the change of the suspension height and the magnetic field produced by the traction during traveling, which may lead to amplitude fluctuation of the received signal. Consequently, the position estimation may be inaccurate. Therefore, a discrete second-order nonlinear trackdifferentiator is proposed based on the boundary characteristic curves, and the new differentiator could also extract the running direction of the train for the traction system. The experimental results show that the tracking differentiator can effectively filter out the signal interference and can provide accurate direction signal.
  • Effect of inlet temperature and equivalence ratio on HCCI engine performance fuelled with ethanol:Numerical investigation 免费阅读 下载全文
  • A numerical model is presented to investigate the performance of homogeneous charge compression ignition(HCCI) engines fueled with ethanol. Two approaches are studied. On one hand, two-step reaction mechanisms with Arrhenius reaction rates are implemented in combustion chemistry modeling. On the other hand, a reduced mechanism containing important reactions of ethanol involving heat release rate and reaction rates compatible with experimental data is employed. Since controls of combustion phenomenon and ignition timing are the main issues of these engines, the effects of inlet temperature and equivalence ratio as the controlling factors on the operating parameters such as ignition timing, burn duration, in-cylinder temperature and pressure of HCCI engines are explored. The results show that the maximum predicted pressures for thermodynamic model are about 71.3×10~5 Pa and 79.79×10~5 Pa, and for chemical kinetic model, they are about 71.48×10~5 Pa and 78.123×10~5 Pa, fairly comparable with corresponding experimental values of 72×10~5 Pa and 78.7×10~5 Pa. It is observed that increasing the initial temperature advances the ignition timing, decreases the burn duration and increases the peak temperature and pressure. Moreover, the maximum temperature and pressure are associated with richer mixtures.
  • A new approach for real time object detection and tracking on high resolution and multi-camera surveillance videos using GPU 免费阅读 下载全文
  • High resolution cameras and multi camera systems are being used in areas of video surveillance like security of public places, traffic monitoring, and military and satellite imaging. This leads to a demand for computational algorithms for real time processing of high resolution videos. Motion detection and background separation play a vital role in capturing the object of interest in surveillance videos, but as we move towards high resolution cameras, the time-complexity of the algorithm increases and thus fails to be a part of real time systems. Parallel architecture provides a surpass platform to work efficiently with complex algorithmic solutions. In this work, a method was proposed for identifying the moving objects perfectly in the videos using adaptive background making, motion detection and object estimation. The pre-processing part includes an adaptive block background making model and a dynamically adaptive thresholding technique to estimate the moving objects. The post processing includes a competent parallel connected component labelling algorithm to estimate perfectly the objects of interest. New parallel processing strategies are developed on each stage of the algorithm to reduce the time-complexity of the system. This algorithm has achieved a average speedup of 12.26 times for lower resolution video frames(320×240, 720×480, 1024×768) and 7.30 times for higher resolution video frames(1360×768, 1920×1080, 2560×1440) on GPU, which is superior to CPU processing. Also, this algorithm was tested by changing the number of threads in a thread block and the minimum execution time has been achieved for 16×16 thread block. And this algorithm was tested on a night sequence where the amount of light in the scene is very less and still the algorithm has given a significant speedup and accuracy in determining the object.
  • Voice activity detection based on deep belief networks using likelihood ratio 免费阅读 下载全文
  • A novel technique is proposed to improve the performance of voice activity detection(VAD) by using deep belief networks(DBN) with a likelihood ratio(LR). The likelihood ratio is derived from the speech and noise spectral components that are assumed to follow the Gaussian probability density function(PDF). The proposed algorithm employs DBN learning in order to classify voice activity by using the input signal to calculate the likelihood ratio. Experiments show that the proposed algorithm yields improved results in various noise environments, compared to the conventional VAD algorithms. Furthermore, the DBN based algorithm decreases the detection probability of error with [0.7, 2.6] compared to the support vector machine based algorithm.
  • A method for improving graph queries processing using positional inverted index (P.I.I) idea in search engines and parallelization techniques 免费阅读 下载全文
  • The idea of positional inverted index is exploited for indexing of graph database. The main idea is the use of hashing tables in order to prune a considerable portion of graph database that cannot contain the answer set. These tables are implemented using column-based techniques and are used to store graphs of database, frequent sub-graphs and the neighborhood of nodes. In order to exact checking of remaining graphs, the vertex invariant is used for isomorphism test which can be parallel implemented. The results of evaluation indicate that proposed method outperforms existing methods.
  • Emotional inference by means of Choquet integral and λ-fuzzy measurement in consideration of ambiguity of human mentality 免费阅读 下载全文
  • Research on human emotions has started to address psychological aspects of human nature and has advanced to the point of designing various models that represent them quantitatively and systematically. Based on the findings, a method is suggested for emotional space formation and emotional inference that enhance the quality and maximize the reality of emotion-based personalized services. In consideration of the subjective tendencies of individuals, AHP was adopted for the quantitative evaluation of human emotions, based on which an emotional space remodeling method is suggested in reference to the emotional model of Thayer and Plutchik, which takes into account personal emotions. In addition, Sugeno fuzzy inference, fuzzy measures, and Choquet integral were adopted for emotional inference in the remodeled personalized emotional space model. Its performance was evaluated through an experiment. Fourteen cases were analyzed with 4.0 and higher evaluation value of emotions inferred, for the evaluation of emotional similarity, through the case studies of 17 kinds of emotional inference methods. Matching results per inference method in ten cases accounting for 71% are confirmed. It is also found that the remaining two cases are inferred as adjoining emotion in the same section. In this manner, the similarity of inference results is verified.
  • Characteristics analysis and library development for piezoelectric transformer to drive a ballast for a 35 W class fluorescent lamp using PSPICE modeling 免费阅读 下载全文
  • PSPICE model driven by an electric equivalent circuit of a piezoelectric circuit is presented. In order to confirm this model to be effective, an independent model of cold cathode fluorescent lamp(CCFL) driving circuit is used to conduct simulations, leading to a precise modeling. A library is configured through modeling and its accuracy is verified through simulations for widely used and representative lamps such as CCFL, fluorescent lamps, HID lamps, and electrodeless fluorescent lamps. On the basis of experiments, a lamp simulation is also performed using PSPICE, which allows us to take advantage of the lamp library easily. Also, PSPICE model driven by an electric equivalent circuit of a piezoelectric transformer is presented. In order to confirm this model to be effective, an independent model of CCFL driving circuit is used to conduct simulations, leading to a precise modeling. In addition, a new type of electronic ballast is proposed, which allows 35 W-class(T5-class) fluorescent lamp to work. This system is built by a rectifier which has improved power factor and half-bridge series resonant inverter. Also, with size of 27.5 mm high, 27.5 mm wide and 2.5 mm thick, the produced piezoelectric transformer has a high step-up ratio, through which it is possible for the electric ballast circuit to be lighter, smaller and more efficient. After the produced ballast is used to drive the fluorescent lamp for 25 min, it yields 0.95 in power factor correction, 86% in efficiency, 35.07 W in output voltage and 20.5 °C in temperature increase while meeting the characteristics of the 35 W-class fluorescent lamp.
  • A novel hybrid algorithm based on a harmony search and artificial bee colony for solving a portfolio optimization problem using a mean-semi variance approach 免费阅读 下载全文
  • Portfolio selection is one of the major capital allocation and budgeting issues in financial management, and a variety of models have been presented for optimal selection. Semi-variance is usually considered as a risk factor in drawing up an efficient frontier and the optimal portfolio. Since semi-variance offers a better estimation of the actual risk portfolio, it was used as a measure to approximate the risk of investment in this work. The optimal portfolio selection is one of the non-deterministic polynomial(NP)-hard problems that have not been presented in an exact algorithm, which can solve this problem in a polynomial time. Meta-heuristic algorithms are usually used to solve such problems. A novel hybrid harmony search and artificial bee colony algorithm and its application were introduced in order to draw efficient frontier portfolios. Computational results show that this algorithm is more successful than the harmony search method and genetic algorithm. In addition, it is more accurate in finding optimal solutions at all levels of risk and return.
  • Theoretical generalization of Markov chain random field from potential function perspective 免费阅读 下载全文
  • The inner relationship between Markov random field(MRF) and Markov chain random field(MCRF) is discussed. MCRF is a special MRF for dealing with high-order interactions of sparse data. It consists of a single spatial Markov chain(SMC) that can move in the whole space. Generally, the theoretical backbone of MCRF is conditional independence assumption, which is a way around the problem of knowing joint probabilities of multi-points. This so-called Naive Bayes assumption should not be taken lightly and should be checked whenever possible because it is mathematically difficult to prove. Rather than trap in this independence proving, an appropriate potential function in MRF theory is chosen instead. The MCRF formulas are well deduced and the joint probability of MRF is presented by localization approach, so that the complicated parameter estimation algorithm and iteration process can be avoided. The MCRF model is then applied to the lithofacies identification of a region and compared with triplex Markov chain(TMC) simulation. Analyses show that the MCRF model will not cause underestimation problem and can better reflect the geological sedimentation process.
  • Characteristics of unsteady flow in porous media while considering threshold pressure gradient with Green's function 免费阅读 下载全文
  • The flow behavior in porous media with threshold pressure gradient(TPG) is more complex than Darcy flow and the equations of motion, and outer boundary and inner boundary with TPG are also different from Darcy flow for unsteady flow of a producing well in a reservoir. An analytic method to solve this kind of problem is in a need of reestablishment. The classical method of Green’s function and Newman product principle in a new way are used to solve the unsteady state flow problems of various shapes of well and reservoir while considering the TPG. Four Green’s functions of point, line, band and circle while considering the TPG are achieved. Then, two well models of vertical well and horizontal well are built and simultaneously the function to calculate the moving boundary of each well model is provided. The results show that when considering TPG the pressure field is much different, which has a sudden pressure change, with a moving boundary in it. And the moving boundary of each well model increases with time but slows down rapidly, especially when the TGP is large.
  • Determination of reasonable finished state of self-anchored suspension bridges 免费阅读 下载全文
  • A systematic and generic procedure for the determination of the reasonable finished state of self-anchored suspension bridges is proposed, the realization of which is mainly through adjustment of the hanger tensions. The initial hanger tensions are first obtained through an iterative analysis by combining the girder-tower-only finite element(FE) model with the analytical program for shape finding of the spatial cable system. These initial hanger tensions, together with the corresponding cable coordinates and internal forces, are then included into the FE model of the total bridge system, the nonlinear analysis of which involves the optimization technique. Calculations are repeated until the optimization algorithm converges to the most optimal hanger tensions(i.e. the desired reasonable finished bridge state). The "temperature rigid arm" is introduced to offset the unavoidable initial deformations of the girder and tower, which are due to the huge axial forces originated from the main cable. Moreover, by changing the stiffness coefficient K in the girder-tower-only FE model, the stiffness proportion of the main girder, the tower or the cable subsystem in the whole structural system could be adjusted according to the design intentions. The effectiveness of the proposed method is examined and demonstrated by one simple tutorial example and one self-anchored suspension bridge.
  • Vertical vibration of a floating pile in a saturated viscoelastic soil layer overlaying bedrock 免费阅读 下载全文
  • An axisymmetrical analytical solution is developed to investigate the vertical time-harmonic vibration of a floating pile in a saturated viscoelastic soil layer overlaying bedrock. The soil is described by porous medium model established by Boer, while the pile is described by a beam vibration theory. By using separation theory of differential operator and variables to solve the dynamic governing equations for the soil, the fundamental solutions for the soil reactions on side and bottom of the pile are obtained. The dynamic impedance of the pile head is then derived by solving the vibration equation for the pile according to the compatibility condition between the pile and the soil. The proposed model is validated by comparing special cases of our model with the existing results. Numerical examples are presented to analyze the vibration characteristics of the pile.
  • Effects of friction variability on isolation performance of rolling-spring systems 免费阅读 下载全文
  • By taking a rolling-spring isolation system as the study object, the effects of the non-uniform distribution of rolling friction coefficient on its isolation performance were analyzed by a compiled computer program. The results show that the errors associated with the structural maximum relative displacement, acceleration and residual displacement due to ignoring the friction variability sequentially grow. This rule is weakened by the spring action, however, the unreasonable spring constant will cause sympathetic vibration. Under the condition of large friction variability, in the calculation of the structural maximum relative displacement and acceleration, the friction variability should be considered. When the structural residual displacement is concerned, the variability of rolling friction coefficient should be fully considered regardless of the friction variability.
  • Oil–water two-phase flow pattern analysis with ERT based measurement and multivariate maximum Lyapunov exponent 免费阅读 下载全文
  • Oil–water two-phase flow patterns in a horizontal pipe are analyzed with a 16-electrode electrical resistance tomography(ERT) system. The measurement data of the ERT are treated as a multivariate time-series, thus the information extracted from each electrode represents the local phase distribution and fraction change at that location. The multivariate maximum Lyapunov exponent(MMLE) is extracted from the 16-dimension time-series to demonstrate the change of flow pattern versus the superficial velocity ratio of oil to water. The correlation dimension of the multivariate time-series is further introduced to jointly characterize and finally separate the flow patterns with MMLE. The change of flow patterns with superficial oil velocity at different water superficial velocities is studied with MMLE and correlation dimension, respectively, and the flow pattern transition can also be characterized with these two features. The proposed MMLE and correlation dimension map could effectively separate the flow patterns, thus is an effective tool for flow pattern identification and transition analysis.
  • Calcium phosphate deposition on surface of porous and dense TiNi alloys in simulated body fluid(刘珏;刘超;李婧;刘敏;阮建明)
    Analysis of 13Cr bloom solidification structure using CA-FE model(翟莹莹;马北越;厉英;姜正义)
    Room temperature gas sensor based on tube-like hydroxyapatite modified with gold nanoparticles(罗兰兰;刘咏;谭彦妮;李会霞;张青;李昆)
    Delamination analysis of woven fabrication laminates using cohesive zone model(Mohsen Moslemi Mohammadreza Khoshravan azar)
    Kinetic study on leaching of nickel from Turkish lateritic ore in nitric acid solution(Tevfik AGACAYAK Veysel ZEDEF Ali ARAS)
    Numerical simulation of chemical vapor deposition reaction in polysilicon reduction furnace(夏小霞[1,2];王志奇;刘斌)
    Effect and mechanism of siderite on reverse anionic flotation of quartz from hematite(罗溪梅;印万忠;王云帆;孙传尧;马英强;刘建)
    Rapid and simultaneous determination of ten off-flavor compounds in water by headspace solid phase microextraction and gas chromatography-mass spectrometry(邹攀;王琳;杨兆光[1,2];李小婉;李海普)
    Effect of gear teeth finishing method on properties of teeth surface layer and its resistance to pitting wear creation(Jan Zwolak Arkadiusz Palczak)
    Integrity of grinding face-gear with worm wheel(唐进元;崔伟;周恒;尹凤)
    Bifurcation and chaos study on transverse-torsional coupled 2K-H planetary gear train with multiple clearances(盛冬平;朱如鹏;靳广虎;陆凤霞;鲍和云)
    Influence of cutter diameter on meshing performance in spiral bevel gears(马志浩;韩星会;华林;熊小双;郑方焱)
    Filtering algorithm and direction identification in relative position estimation based on induction loop-cable(窦峰山;戴春辉;谢云德)
    Effect of inlet temperature and equivalence ratio on HCCI engine performance fuelled with ethanol:Numerical investigation(Alireza Rahbari)
    A new approach for real time object detection and tracking on high resolution and multi-camera surveillance videos using GPU(Mohammad Farukh Hashmi Ritu Pal Rajat Saxena Avinash G.Keskar)
    Voice activity detection based on deep belief networks using likelihood ratio(KIM Sang-Kyun;PARK Young-Jin;LEE Sangmin[1,3])
    A method for improving graph queries processing using positional inverted index (P.I.I) idea in search engines and parallelization techniques(Hamed Dinari Hassan Naderi)
    Emotional inference by means of Choquet integral and λ-fuzzy measurement in consideration of ambiguity of human mentality(KWON Il-kyoung;LEE Sang-yong)
    Characteristics analysis and library development for piezoelectric transformer to drive a ballast for a 35 W class fluorescent lamp using PSPICE modeling(KIM Young-Choon)
    A novel hybrid algorithm based on a harmony search and artificial bee colony for solving a portfolio optimization problem using a mean-semi variance approach(Seyed Mohammad Seyedhosseini;Mohammad Javad Esfahani;Mehdi Ghaffari)
    Theoretical generalization of Markov chain random field from potential function perspective(黄翔;王志忠;郭建华)
    Characteristics of unsteady flow in porous media while considering threshold pressure gradient with Green's function(曹仁义;陈岭;Y.Zee Ma;刘雪莹;于柏慧)
    Determination of reasonable finished state of self-anchored suspension bridges(李建慧;冯东明;李爱群;袁辉辉)
    Vertical vibration of a floating pile in a saturated viscoelastic soil layer overlaying bedrock(崔春义[1,2];张石平;杨刚;李晓飞)
    Effects of friction variability on isolation performance of rolling-spring systems(魏标[1,2];王鹏;杨添涵;戴公连[1,2];蒋丽忠[1,2];文颖)
    Oil–water two-phase flow pattern analysis with ERT based measurement and multivariate maximum Lyapunov exponent(谭超;王娜娜;董峰)
    《中南大学学报:英文版》封面

    关于我们 | 网站声明 | 合作伙伴 | 联系方式 | IP查询
    金月芽期刊网 2017 触屏版 电脑版 京ICP备13008804号-2